首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   2篇
  国内免费   2篇
测绘学   6篇
大气科学   4篇
地球物理   20篇
地质学   87篇
海洋学   2篇
天文学   25篇
自然地理   3篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   6篇
  2016年   3篇
  2015年   4篇
  2014年   11篇
  2013年   7篇
  2012年   3篇
  2011年   9篇
  2010年   6篇
  2009年   9篇
  2008年   10篇
  2007年   10篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2003年   5篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1983年   4篇
  1982年   6篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有147条查询结果,搜索用时 60 毫秒
101.
Thermodynamic and chemographic modelling of complex reaction textures observed in Mg-Al-rich pelitic granulites is an important tool to unravel the P–T evolutionary history of high-grade rocks. In the Eastern Ghats Belt, India, several studies have been carried out on these fascinating aluminous granulites, and the results of these studies have revealed complex P–T–t histories (Dasgupta and Sengupta 1995; Sengupta et al. 1999; Rickers et al. 2001a, 2001b; Gupta et al. 1999; Dobmeier and Simmat 2002; Dobmeier and Raith 2003). In recent communication, Bhattacharya and Kar (2002) reported reaction textures from a suite of Mg-Al granulites from the Paderu area of the Eastern Ghats Belt. Combining the textural relations and thermodynamic calibration of some construed reactions, the authors have put forward a single phase metamorphic evolution of the area along a clockwise pressure–temperature trajectory. Combining the petrological features from the Paderu area with those reported from the Chilka Lake complex, the authors proposed a general tectonic model for the entire Eastern Ghats Belt. Incidentally, the rocks in and around Paderu have been studied in some detail by several other workers (Lal et al. 1987; Mohan et al. 1997; Sengupta et al. 1997). The purpose of this comment is to demonstrate that the conclusions made in the paper are inconsistent with the petrological features described in the text. Further, the thermodynamic treatment used in the paper has serious errors in many places, and hence, is often in complete disagreement with the existing experimental data and theoretical analyses on the Mg-Al-rich assemblages. There are also significant problems arising from the poor quality of the analytical database. Unfortunately, the authors cite only a few published works (mostly their own) ignoring many other relevant studies from this belt (cited above). Our observations are organised according to the sections of the paper.Editorial responsibility: T.L. Grove  相似文献   
102.
The gross seismotectonic features for the Burmese-Andaman arc system which defines the northeast margin of the Indian plate are rather well known but variations in the subduction zone geometry along and across the arc and fault pattern within the subducting Indian plate have not been studied. Present workaims to study these by using seismicity data whose results are presented in the form of: (a) Lithospheric across-the-arc sections at about every 100–120 km (approximately one degree latitude apart) covering the 3500 km longBurmese-Andaman arc system, (b) a structure contour map showing the depth tothe top surface of the seismically active lithosphere and (c) interpretationof focal mechanism solutions for 148 Benioff zone earthquakes. Both penetrationdepth and the dip of the Benioff zone vary considerably along the arc in correspondence to the curvature of the fold-thrust belt which varies from concave to convex in different sectors of the arc. Several extensive `Hinge faults' that abut at high angles to the arc orientation, are inferred from aninterpretation of the structure contour map. Active nature of the hinge faultsis established in several areas by their association with earthquakes andcorroborated through fault plane solutions. At shallow level of the Benioffzone along these faults, focal mechanism solutions display left lateral strikeslip movement while at deeper levels reverse fault solutions are common.  相似文献   
103.
Charged dust grains of radiia3×10–63×10–5 cm may acquire relativistic energy (>1018 eV) in the intergalactic medium. In order to attain relativistic energy, dust grains have to move in and out (scattering) of the magnetic field of the medium. A relativistic grain of radiusa10–5 cm with Lorentz factor 103 approaching the Earth will break up either due to electrostatic charge or due to sputtering about 150100 km, and may scatter solar photons via a fluorescence process. Dust grains may also melt into droplets in the solar vicinity and may contribute towards observed gamma-ray bursts.  相似文献   
104.
The physical conditions under which suprathermal grains may loose energy and the processes involving the grains (a3×10–6 cm) destruction are investigated. It is found that the dust grain once attaining the velocityU (105 cm s–1) may attain suprathermal energy (v g3×108 cm s–1) and subsequently may also attain relativistic energy are almost indestructible in the accelerating phase.  相似文献   
105.
Phulad Shear Zone (PSZ) of Delhi Fold Belt in Rajasthan is a northeasterly striking ductile shear zone with a well developed mylonitic foliation (035/70E) and a downdip stretching lineation. The deformation in the PSZ has developed in a transpressional regime with thrusting sense of movement. The northeastern unit, i.e., the hanging wall contains a variety of rocks namely calc-silicates, pelites and amphibolites and the southwestern unit, i.e., the footwall unit contains only granitic rocks. Systematic investigation of the granites of the southwestern unit indicate a gradual change in the intensity of deformation from a distance of about 1 km west of the shear zone to the shear zone proper. The granite changes from weakly deformed granite to a mylonite/ultramylonite as we proceed towards the PSZ. The weakly deformed granite shows a crude foliation with the same attitude of mylonitic foliation of the PSZ. Microscopic study reveals the incipient development of C and S fabric with angle between C and S varying from 15 ° to 24 °. The small angle between the C and S fabric in the least deformed granite variety indicates that the deformation has strong pure shear component. At a distance of about 1 m away from the PSZ, there is abrupt change in the intensity of deformation. The granite becomes intensely foliated with a strong downdip lineation and the rock becomes a true mylonite. In mesoscopic scale, the granite shows stretched porphyroclasts in both XZ and YZ sections indicating a flattening type of deformation. The angle between the C and S fabric is further reduced and finally becomes nearly parallel. In most places, S fabric is gradually replaced by C fabric. Calculation of sectional kinematic vorticity number ( Wn) from the protomylonitic and mylonite/ultramylonite granites varies from 0.3 ± 0.03 to 0.55 ± 0.04 indicating a strong component of pure shear. The similarity of the geometry of structures in the PSZ and the granites demonstrates that the deformation of the two units is broadly synchronous and the deformation in both the units is transpressional.  相似文献   
106.
We analyse the seismicity pattern including b-value in the north Sumatra-Great Nicobar region from 1976 to 2004. The analysis suggests that there were a number of significant, intermediate and short-term precursors before the magnitude 7.6 earthquake of 2 November 2002. However, they were not found to be so prominent prior to the magnitude 9.0 earthquake of 26 December 2004 though downward migration of activity and a 50-day short-term quiescence was observed before the event. The various precursors identified include post-seismic and intermediate-term quiescence of 13 and 10 years respectively, between the 1976 (magnitude 6.3) and 2002 earthquakes with two years (1990–1991) of increase in background seismicity; renewed seismicity, downward migration of seismic activity and foreshocks in 2002, just before the mainshock. Spatial variation in b-value with time indicates precursory changes in the form of high b-value zone near the epicenter preceding the mainshocks of 2004 and 2002 and temporal rise in b-value in the epicentral area before the 2002 earthquake.  相似文献   
107.
We performed modified iterative sandwich experiments (MISE) to determine the composition of carbonatitic melt generated near the solidus of natural, fertile peridotite + CO2 at 1,200–1,245°C and 6.6 GPa. Six iterations were performed with natural peridotite (MixKLB-1: Mg# = 89.7) and ∼10 wt% added carbonate to achieve the equilibrium carbonatite composition. Compositions of melts and coexisting minerals converged to a constant composition after the fourth iteration, with the silicate mineral compositions matching those expected at the solidus of carbonated peridotite at 6.6 GPa and 1,230°C, as determined from a sub-solidus experiment with MixKLB-1 peridotite. Partial melts expected from a carbonated lherzolite at a melt fraction of 0.01–0.05% at 6.6 GPa have the composition of sodic iron-bearing dolomitic carbonatite, with molar Ca/(Ca + Mg) of 0.413 ± 0.001, Ca# [100 × molar Ca/(Ca + Mg + Fe*)] of 37.1 ± 0.1, and Mg# of 83.7 ± 0.6. SiO2, TiO2 and Al2O3 concentrations are 4.1 ± 0.1, 1.0 ± 0.1, and 0.30 ± 0.02 wt%, whereas the Na2O concentration is 4.0 ± 0.2 wt%. Comparison of our results with other iterative sandwich experiments at lower pressures indicate that near-solidus carbonatite derived from mantle lherzolite become less calcic with increasing pressure. Thus carbonatitic melt percolating through the deep mantle must dissolve cpx from surrounding peridotite and precipitate opx. Significant FeO* and Na2O concentrations in near solidus carbonatitic partial melt likely account for the ∼150°C lower solidus temperature of natural carbonated peridotite compared to the solidus of synthetic peridotite in the system CMAS + CO2. The experiments demonstrate that the MISE method can determine the composition of partial melts at very low melt fraction after a small number of iterations.  相似文献   
108.
The Bathonian ammonite assemblages have been previously poorly recorded in Kutch. The present study has unearthed a rich array of ammonite taxa ranging from the Middle to Upper Bathonian. While Oxycerites Rollier (1909) is a new record from Kutch, the oldest occurrence of Choffatia Siemiradzki (1898) has been found from the Middle Bathonian horizon. Oxycerites cf. orbis (Giebel) is a zonal index of the Late Bathonian in other areas and thus facilitates interprovincial correlation. Besides, palaeobiogeographic and stratigraphic distribution of many species have been modified based on new information. For example, macrocephalitin species, i.e., Kamptokephalites cf. etheridgei Spath (1928), Macrocephalites bifurcatus transient intermedius Spath (1928), M. cf. mantataranus Boehm (1912) were previously known from West Pacific, Indonesia have been now found in Kutch. Gracilisphinctes Buckman (1920) has been previously known to occur during the Middle Bathonian time, the present work extends its stratigraphic distribution up to the definite Upper Bathonian horizon. Procerites hians (Waagen) an endemic species in Kutch previously known from the Upper Bathonian beds, its stratigraphic range has been extended down to the Middle Bathonian.Detail taxonomy of the newly obtained taxa has been done and in many cases sexual dimorphism has been recognized.  相似文献   
109.
The earthquake events of Himalaya of magnitude ≥5.0 from the time window 1905–2000 are statistically analysed. The inter-event time between earthquakes shows Hurst phenomena of temporal clustering which are spatially located in five distinct domains along the Himalayan fold-thrust belt. Out of these, two domains, one around Uttaranchal-Nepal border and the other around Nepal-Sikkim border reveal maximum number of temporal clusters and thus considered as seismically most potential zones of the Himalaya. Both these zones are located at the interface of the orthogonally disposed major tectonic discontinuities of the Peninsular Shield and Himalayan fold-thrust belt. Such zones are geologically most favourable locales for strain accumulation during later-tectonic movement. Statistical analysis points towards a probability of recurrence of seismic events in near future in these two zones. However, validity of such statistical results can be ascertained by detailed geological and geophysical modelling of the terrain.  相似文献   
110.
Mn silicate-carbonate rocks at Parseoni occur as conformable lenses within metapelites and calc-silicate rocks of the Precambrian Sausar Group, India. The host rocks are estimated to have been metamorphosed at uppermost P-T conditions of 500–550°C and 3–4 kbar. The Mn-rich rocks contain appreciable Fe, reflected in the occurrence of magnetite(1) (MnO 1%), magnetite(2) (MnO 15%) and magnetite(3) (MnO 10%). Two contrasting associations of pyroxmangite, with and without tephroite, developed in the Mn silicate-carbonate rocks under isothermal-isobaric conditions. The former assemblage formed in relatively Fe-rich bulk compositions and equilibrated with a metamorphic fluid having a low X CO 2 (<0.2), and the latter equilibrated with a CO2-rich fluid. Rhodochrosite+magnetite(1)+quartz protoliths produced the observed mineral assemblages on metamorphism. Partitioning of major elements between coexisting phases is somewhat variable. Fe shows preference for tephroite over pyroxmangite at the ambient physical conditions of metamorphism. Oxygen fugacity during metamorphism was monitored at or near the QFM buffer in tephroite bearing domains, and the fluid composition was buffered by mineral reactions in respective domains. As compared to other metamorphosed Mn deposits of the Sausar Group, the Mn silicate-carbonate rocks at Parseoni were, therefore, metamorphosed at much lower f O 2 through complex mineral-fluid interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号